Extensions 1→N→G→Q→1 with N=C22xS3 and Q=C3:S3

Direct product G=NxQ with N=C22xS3 and Q=C3:S3
dρLabelID
C22xS3xC3:S372C2^2xS3xC3:S3432,768

Semidirect products G=N:Q with N=C22xS3 and Q=C3:S3
extensionφ:Q→Out NdρLabelID
(C22xS3):(C3:S3) = S3xC3:S4φ: C3:S3/C3S3 ⊆ Out C22xS32412+(C2^2xS3):(C3:S3)432,747
(C22xS3):2(C3:S3) = C2xC33:6D4φ: C3:S3/C32C2 ⊆ Out C22xS3144(C2^2xS3):2(C3:S3)432,680
(C22xS3):3(C3:S3) = C2xC33:7D4φ: C3:S3/C32C2 ⊆ Out C22xS372(C2^2xS3):3(C3:S3)432,681
(C22xS3):4(C3:S3) = S3xC32:7D4φ: C3:S3/C32C2 ⊆ Out C22xS372(C2^2xS3):4(C3:S3)432,684

Non-split extensions G=N.Q with N=C22xS3 and Q=C3:S3
extensionφ:Q→Out NdρLabelID
(C22xS3).(C3:S3) = C62.77D6φ: C3:S3/C32C2 ⊆ Out C22xS3144(C2^2xS3).(C3:S3)432,449
(C22xS3).2(C3:S3) = C2xS3xC3:Dic3φ: trivial image144(C2^2xS3).2(C3:S3)432,674

׿
x
:
Z
F
o
wr
Q
<